Szegö quadrature formulas for certain Jacobi-type weight functions
نویسندگان
چکیده
In this paper we are concerned with the estimation of integrals on the unit circle of the form ∫ 2π 0 f(eiθ)ω(θ)dθ by means of the so-called Szegö quadrature formulas, i.e., formulas of the type ∑n j=1 λjf(xj) with distinct nodes on the unit circle, exactly integrating Laurent polynomials in subspaces of dimension as high as possible. When considering certain weight functions ω(θ) related to the Jacobi functions for the interval [−1, 1], nodes {xj}j=1 and weights {λj}j=1 in Szegö quadrature formulas are explicitly deduced. Illustrative numerical examples are also given.
منابع مشابه
On the Improvement of the Solutions to a Set of Simultaneous Linear Equations using the ILLIAG
where 5 > 0, a is a constant, and F\(p) is analytic and bounded in the half plane Re(j>) > c. We assume that this condition is satisfied. Whether this condition is also sufficient for the convergence of the w-point quadrature formula to the true value of f(t) in (1), when n tends to infinity, has not been determined. The author makes use here of the fact that the convergence occurs whenever F(p...
متن کاملPii: S0898-1221(96)00223-4
Abs t r ac t -An account is given of the role played by moments and modified moments in the construction of quadrature rules, specifically weighted Newton-Cotes and Gaussian rules. Fast and slow Lagrange interpolation algorithms, combined with Gaussian quadrature, as well as linear algebra methods based on moment equations, axe described for generating Newton-Cotes formulae. The weaknesses and ...
متن کاملOn generalized averaged Gaussian formulas
We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions w(x) ≡ w(α,β)(x) = (1− x)α(1 + x)β (α, β > −1) we give a necessary and sufficient ...
متن کاملMatrix methods for quadrature formulas on the unit circle. A survey
In this paper we give a survey of some results concerning the computation of quadrature formulas on the unit circle. Like nodes and weights of Gauss quadrature formulas (for the estimation of integrals with respect to measures on the real line) can be computed from the eigenvalue decomposition of the Jacobi matrix, Szegő quadrature formulas (for the approximation of integrals with respect to me...
متن کاملGauss-Jacobi-type quadrature rules for fractional directional integrals
Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002